Course Type	Course Code	Name of Course	L	T	P	Credit
DC	NMCC515	Differential Equations	3	1	0	4

Course Objective

• To enable the students to understand the theory of Ordinary and Partial Differential Equations and their utility in solving real-world problems arising in mathematical physics and engineering.

Learning Outcomes

Students will get expertise to solve problems in mathematical physics and engineering.

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome
1	Introduction, Series solutions of ODE: Ordinary points, Power series solutions, Regular singular points, Frobenius method	5L+2T	From this topic, students will understand advanced methods when complexity arises in the coefficients of differential equations.
2	Legendre differential equation, Legendre function, Orthogonal properties, Generating function. Bessel differential equations, Bessel function properties, Generating function.	8L+3T	This unit will help students to understand transform technique to solve problems easily. Furthermore, students will learn special type of differential equations for engineering applications.
3	Second order boundary value problems, Self- adjoint eigen value problems, Sturm- Liouville Systems. Stability of a Linear and Nonlinear Systems.	8L+3T	From this topic, students will learn another special type of differential equation and its solution properties. In addition, they will learn boundary value problems and applications.
4	First order PDE: Introduction, Cauchy Problem, Quasi-Linear PDE, Non-linear PDE.	6L+3T	This unit will help students to learn the genesis of first-order PDE and solution methods. Also, they understand their occurrence in engineering.
5	Second order PDE: classification, reduction to canonical form, different boundary conditions, Solution of Laplace and Poisson equations in 2D using method of separation of variables	8L+3T	From this topic, students will learn different methods to solve second-order PDE. Also, they understand their occurrence in engineering.
6	Solution of wave and heat equations in homogeneous and non-homogeneous cases, Solution of PDE using the Laplace transform method.	7L+3T	This unit will help students to apply the Laplace transform method to get solutions of PDE. Also, they will learn advanced methods for complicated equations.
	Total	42L+14T	

Text Books

- 1. G.F. Simmons, Differential Equations with Applications and Historical Notes, Tata McGraw-Hill Edition, Delhi (2003)
- 2. T. Amaranath, An Elementary Course in Partial Differential Equations, 2nd Ed. Narosa Publishing House, Chennai (2002)

Reference Books

- 1. Tyn Myint-U, Ordinary Differential Equations, North-Holand, Newyork (1978).
- 2.Tyn Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers. Birkhäuser Boston (2007)